Антивитамины механизм действия. Антивитамины

Антивитамины. Витамин Антивитамин Механизм действия антивитамина Применение антивитамина 1

Антивитамины механизм действия. Антивитамины

Витамин Антивитамин Механизм действия антивитамина Применение антивитамина
1. Пара-амино-бензойная кислота (ПАБК) Сульфанил-амиды (стрептоцид, норсульфазол, фталазол) Сульфаниламиды – структурные аналоги ПАБК. Они ингибируют фермент путем вытеснения ПАБК из комплекса с ферментом, синтезирующим фолиевую кислоту, что ведет к торможению роста бактерий. Для лечения инфекционных заболеваний.
2. Фолиевая кислота Птеридины (аминоптерин, метотрексат). Встраиваются в активный центр фолатзависимых ферментов и блокирует синтез нуклеиновых кислот (цитостатическое действие), угнетается деление клеток. Для лечения острых лейкозов, некоторых форм злокачественных опухолей
3. Витамин К Кумарины (дикумарин, варфарин, тромексан). Кумарины блокируют образование протромбина, проконвертина и др. факторов свертывания крови в печени (оказывают противосвертывающее действие). Для профилактики и лечения тромбозов (стенокардия, тромбофлебиты, кардиосклероз и др.).
4. Витамин РР Гидразид изоникотиновой кислоты (изониазид) и его производные (тубазид, фтивазид, метозид). Антивитамины включаются в структуры НАД и НАДФ, образуя ложные коферменты, которые не способны участвовать в окислительно-восстановительных и других реакциях Биохимические системы микобактерий туберкулеза наиболее чувствительны к этим антивитаминам. Для лечения туберкулеза.
5. Тиамин (В1) Окситиамин, пиритиамин. Антивитамины замещают коферменты тиамина в ферментативных реакциях. Для создания эксперимен-тального В1- авитаминоза.
6. Рибофла- вин (В2) Изорибофлавин, дихлоррибо-флавин, галактофлавин. Антивитамины замещают коферменты рибофлавина в ферментативных реакциях. Для создания в экспериментах гипо- и арибофлави-нозов.
7. Пиридок-син (В6) Дезоксипири-доксин, циклосерин Антивитамин замещает пиридоксалевые коферменты в ферментативных реакциях. Для создания эксперименталь-ной пиридоксиновой недостаточности

Антивитамины нашли широкое применение в клинической практике в качестве антибактериальных и противоопухолевых средств, тормозящих синтез белков и нуклеиновых кислот в бактериальных и опухолевых клетках.

ГЛАВА 16
УГЛЕВОДЫ ТКАНЕЙ И ПИЩИ – ОБМЕН И ФУНКЦИИ

Углеводы входят в состав живых организмов и вместе с белками, липидами и нуклеиновыми кислотами определяют специфичность их строения и функционирования. Углеводы участвуют во многих метаболических процессах, но прежде всего они являются основными поставщиками энергии.

На долю углеводов приходится примерно 75 % массы пищевого суточного рациона и более 50 % от суточного количества необходимых калорий.

Углеводы можно разделить на 3 основные группы в зависимости от количества составляющих их мономеров: моносахариды; олигосахариды; полисахариды.

По функциям углеводы условно можно подразделить на две группы:

1. Углеводы с преимущественно энергетической функцией. К ним относится глюкоза, гликоген, крахмал.

2. Углеводы с преимущественно структурной функцией. К ним относятся гликопротеины, гликолипиды, гликозаминогликаны, у растений – клетчатка.

Углеводы выполняют ряд важных функций:

1. Энергетическую.

2. Структурную – входят в состав мембран, глюкозаминогликаны содержатся в соединительной ткани, пентозы входят в состав нуклеиновых кислот.

3. Метаболическую – из углеводов могут синтезироваться соединения других классов – липиды, аминокислоты и др.

4. Защитную – входят в состав иммуноглобулинов.

5. Рецепторную – входят в состав гликопротеинов, гликолипидов.

6. Специфическую – гепарин и др.

Таблица 16.1

Углеводы пищи (300 – 500 г. в сутки)

Углеводы Представители Пищевые продукты Количество г/сутки
Полисаха-риды Крахмал, амилоза, аминопектин Хлеб, крупа, рис, картофель   250-400
Дисаха-риды Сахароза, лактоза, мальтоза Сахар, кондитерские изделия, молоко   50-100
Моносаха-риды Глюкоза, фруктоза, галактоза Фрукты, ягоды, соки   0-50

Пищевые волокна (клетчатка) – это компоненты растительных клеток, которые не расщепляются ферментами животного организма. Основной компонент пищевых волокон – целлюлоза. Рекомендуемое суточное потребление клетчатки – не менее 25 г.

Биологическая роль клетчатки

1. Утилизируется микрофлорой кишечника и поддерживает ее нормальный состав.

2. Адсорбирует воду и удерживает ее в полости кишечника.

3. Увеличивает объем каловых масс.

4. Нормализует давление на стенки кишечника.

5. Связывает некоторые токсические вещества, образующиеся в кишечнике, а также адсорбирует радионуклиды.

Переваривание углеводов

В слюне содержится фермент α-амилаза, расщепляющая α-1,4-гликозидные связи внутри молекул полисахаридов.

Переваривание основной массы углеводов происходит в двенадцатиперстной кишке под действием ферментов панкреатического сока – α-амилазы, амило-1,6-гликозидазы и олиго-1,6-гликозидаза (терминальной декстриназы).

Ферменты, расщепляющие гликозидные связи в дисахаридах (дисахаридазы), образуют ферментативные комплексы, локализованные на наружной поверхности цитоплазматической мембраны энтероцитов.

Сахаразо-изомальтазный комплекс – гидролизует сахарозу и изомальтозу, расщепляя α-1,2 – и α-1,6-гликозидные связи. Кроме того обладает мальтазной и мальтотриазной активностью, гидролизуя α-1,4-гликозидные связи в мальтозе и мальтотриозе (трисахарид, образующийся из крахмала).

Гликоамилазный комплекс – катализирует гидролиз α-1,4-связей между глюкозными остатками в олисахаридах, действуя с восстанавливающего конца. Расщепляет также связи в мальтозе, действуя как мальтаза.

β-гликозидазный комплекс (лактаза) – расщепляет β-1,4-гликозидные связи в лактозе.

Трегалаза – также гликозидазный комплекс, гидролизующий связи между мономерами в трегалозе – дисахариде, содержащемся в грибах. Трегалоза состоит из двух глюкозных остатков, связанных гликозидной связью между первыми аномерными атомами углерода.

Предыдущая66676869707172737475767778798081Следующая

Дата добавления: 2015-07-18; просмотров: 1341; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

ПОСМОТРЕТЬ ЁЩЕ:

Источник: https://helpiks.org/4-14453.html

Поливитаминные препараты

Антивитамины механизм действия. Антивитамины

Медицинскаяпромышленность разных стран выпускает:

  1. поливитаминные препараты – готовые лекарственные формы (таблетки, растворимые таблетки, жевательные таблетки, драже, капсулы, сиропы и др.), включающие набор различных витаминов (в дозах, близких к суточной потребности);

  2. витаминно-минеральные комплексы, включающие наряду с витаминами макроэлементы (калий, кальций, магний, фосфор) и микроэлементы (железо, медь, цинк, фтор, йод, марганец, молибден, селен, кобальт и др.);

  3. витаминно-минеральные комплексы «третьего поколения», включающие наряду с витаминами, макро- и микроэлементами, другие биологически активные вещества природного происхождения, предназначенные:

  • для разных возрастных и половых групп;
  • для поддержания функциональной активности отдельных органов и систем человеческого организма.

Поливитаминныепрепараты:

«Витус»,«Гексавит», «Гендевит», «Антиоксикапс»,«Аэровит», «Крепыш».

Витаминно-минеральныекомплексы:

«Гравитус»,«Витрум», «Кальций-D3Никомед», «Магне В6»,«Мульти-табс», «Центрум», «Пиковит»,«Юникап».

Витаминно-минеральныекомплексы с биологически активнымидобавками:

«Гериатрикс»,«Алфавит», «Доктор Тайсс Геровитал»,«Компливит», «Лизивит-С».

Антивитамины

Антивитамины– вещества, вызывающие снижение илиполную потерю биологической активностивитаминов.

Антивитаминыможно разделить на две основные группы:

  1. антивитамины, которые инактивируют витамин путем его разрушения или связывания его молекул в неактивные формы;

  2. антивитамины, замещающие коферменты (производные витаминов) в активных центрах ферментов.

Примерыдействия антивитаминов первой группы:

а)яичный белок авидинсвязывается с биотином и образуетсяавидин-биотиновый комплекс, в которомбиотин лишен активности, не растворимв воде, не всасывается из кишечника ине может быть использован как кофермент;

б)фермент аскорбатоксидазаокисляет аскорбиновую кислоту;

в)фермент тиаминазаразрушает тиамин (В1);

г)фермент липооксидазапутём окисления разрушает провитаминА – каротин.

Ковторой группе относятся вещества,структурноподобные витаминам. Онивзаимодействуют с апоферментом иобразуют неактивный ферментный комплекспо типу конкурентного ингибирования.Структурные аналоги витаминов могутоказывать существенное влияние напроцессы обмена в организме, Большинствоиз них применяются:

а)как лечебные средства, специфичнодействующие на определенные биохимическиеи физиологические процессы;

б)для создания экспериментальныхавитаминозов у животных.

Таблица 15.3

Убийцы витаминов — антивитамины: что это, где содержатся и как обезвредить

Антивитамины механизм действия. Антивитамины

Вы правильно и сбалансированно питаетесь, едите овощи, фрукты и злаки, богатые клетчаткой, макро- и микроэлементами и витаминами? Но вот эти вещества в наших продуктах могут свести на нет действие витаминов и спровоцировать авитаминоз. Или, наоборот, станут средством лечения многих болезней. Знакомьтесь: антивитамины.

Антивитамины — это соединения, которые схожи по химическому строению с витаминами, но обладают совершенно противоположным эффектом для человека.

Попадая в организм, антивитамины включаются вместо витаминов в реакции обмена веществ и тормозят или нарушают их нормальное течение.

Это ведет к витаминной недостаточности даже в тех случаях, когда определенный витамин естественным путем поступает с пищей в достаточном количестве.

Классический пример: вы разрезали яблоко и оставили на потом одну половину, которая со временем начинает темнеть. Да, мы все помним про воздействие кислорода и окисление, но в этой потемневшей половинке витамина С практически не осталось.

Под воздействием света в яблоке вырабатывается аскорбиназа — вещество, сходное по химической структуре с витамином С, но обладающее противоположным действием. Оно вызывает окисление витамина С и его разрушение. Ее много в свежих фруктах и овощах, особенно в яблоках, огурцах, зелени и кабачках.

Поэтому ешьте их сразу свежими или обрабатывайте термически.

Антивитамины известны почти для всех витаминов.

Тиаминаза

Антивитамин витамина В1 (тиамина). Этот фермент разрушает своего полезного соперника. Избыточное количество тиаминазы в организме может стать причиной гиповитаминоза В1.

Этот вредный фермент содержится в тканях некоторых видов сырой (соленой и вяленой) пресноводной и морской рыбы. Избежать неприятностей очень просто: фермент, как и любой другой белок, сворачивается и теряет активность при нагревании.

Поэтому рыбу надо просто отваривать, запекать или жарить. И не превращать популярные суши в ежедневное блюдо.

Тиаминаза 2

Растительный вид фермента содержится, например, в брюссельской и савойской капусте, рисе, шпинате, сыром картофеле. Тиаминаза 2 легко исчезает при нагревании, поэтому осторожным нужно быть только фанатичным сыроедам.

Авидин

Антивитамин витамина Н, биотина, витамина В7 и кофермента R. Авидин связывает витамин Н и выводит его транзитом из организма. Он содержится в сыром яичном белке.

Конечно, из-за боязни сальмонеллеза мало кто употребляет сейчас сырые куриные яйца, но многие хозяйки продолжают делать белковые крема. Лучше отказаться от этого сладкого дополнения, так как даже в вымытом яйце сальмонелла может выжить.

Тем более, что в жареных и вареных яйцах необходимый витамин Н остается, а авидин исчезает.

Кофеин

Удивлены? То, без чего многие из нас не могут взбодриться, — очень популярный антивитамин. Он мешает усвоению витаминов С и группы B. Чтобы разрешить этот конфликт, чай или кофе лучше не пить утром на голодный желудок и тем более заменять ими полноценную пищу. Лучше употреблять эти напитки во время еды или через час-полтора после еды.

Аминокислота лейцин

Антипод витамина РР (ниацина). Если в вашем рационе много бурого риса, фасоли, сои, грецких орехов, шампиньонов и вешенок, коровьего молока и говядины, то возникает риск дефицита витамина РР. Также не забывайте про термическую обработку. Кроме лейцина, у витамина РР есть еще 2 антивитамина: индолилуксусная кислота и ацетил пиридин. Этих веществ много в кукурузе.

Гидрогенизированные жиры

Они очень вредят ретинолу — витамину А. Хоть ретинол и жирорастворимый, но он плохо усваивается при избытке маргарина и специальных кулинарных жиров.

Когда готовите печенку, рыбу, яйца, морковь и другие продукты, богатые ретинолом, используйте минимальное количество жира. Если жарите эти продукты, то лучше на классическом подсолнечном, оливковом или сливочном масле.

Также советуем не добавлять маргарин при приготовлении выпечки. Конечно, этот кулинарный жир гораздо дешевле, но зато он и намного более вредный.

Полиненасыщенные жирные кислоты

Полезные, в общем, соединения при их переизбытке превращаются в яд. Полиненасыщенные жирные кислоты, входящие в состав растительного и соевого масла, а также бобовых, являются антагонистом витамина Е. Поэтому даже с полезными жирами нужно быть бдительными. Кстати, соевые бобы при излишнем их употреблении могут также убивать витамин D.

Дикумарин

Конкурент витамина К. Антивитамин снижает действие филлохинона (витамина К) и содержится в инжире, пастернаке и в таком растении, как донник лекарственный.

Плюсы и польза антивитаминов

Антивитамины были открыты случайно, когда ученые пытались усилить свойства витамина В9 (фолиевой кислоты), который активизирует процессы кроветворения. Но в результате различных химических процессов витамин В9 преобразовался, утратил свои привычные свойства, зато приобрел новые — стал тормозить рост раковых клеток.

Оказать положительное влияние может и дикумарин — антагонист витамина К. Оба эти вещества участвуют в процессах кроветворения. Вот только витамин К способствует свертываемости крови, а дикумарин нарушает ее. Теперь свойство этого антивитамина используют для лечения соответствующих заболеваний.

Поэтому главный наш совет — соблюдать меру. Большинство продуктов кушайте сразу и не храните долго или термически их обрабатывайте. Термическая обработка это тоже не всегда вредно. Особенно варка. Также серьезными врагами витаминов были и остаются алкоголь и курение — еще один повод избавиться от вредных привычек.

Подготовлено с использованием материалов: zdr.ru, zdorovja.com.ua, polonsil.ru, fizrazvitie.ru

Источник: https://mag.103.by/novosti-kompanii/40653-ubijcy-vitaminov-antivitaminy-chto-eto-gde-soderzhatsya-i-kak-obezvredity/

Антивитамины: как взаимодействуют они с витаминами

Антивитамины механизм действия. Антивитамины

Антивитамины — соединения, вызывающие снижение, либо полную потерю биологической активности витаминов. Ученые обратили внимание на данную группу веществ несколько десятилетий назад.

Эксперимент по синтезу витамина и усилению его действия на организм привел к обнаружению интересной особенности: полученное вещество было сходно по строению с искомым, но, наоборот, блокировало его действие.

Какие антивитамины существуют и представляют ли они опасность? Где можно обнаружить данные вещества? Сначала следует рассмотреть механизм их биологического действия.

Свойства

Антивитамины делятся на несколько групп.

Различают:

  • Неконкурентные ингибиторы. Вещества, прямо действующие на витамин. Они расщепляют его, либо образуют неактивные комплексы.
  • Антагонисты-конкуренты. Благодаря структурному сходству встраиваются в биологически важные соединения вместо витаминов и выключают их из обменных процессов.

Значение

Витамины и антивитамины — это обычно сходные по строению вещества, но с противоположной активностью. Антагонисты некоторых соединений можно обнаружить в пище. Длительное употребление содержащей их еды способно привести к появлению признаков авитаминоза.

Например, во время медицинского обследования группы жителей Таиланда было выявлено, что у большого числа людей наблюдается нехватка тиамина. Причиной послужили особенности рациона: на протяжении длительного времени данная категория лиц употребляла большое количество сырой рыбы. Указанный продукт содержал фермент тиаминазу, расщепляющую витамин B1 до неактивных составляющих.

Антивитамины активно используют в медицине. Некоторые из них служат основой для химиотерапевтических препаратов. Ряд научных экспериментов основан на применении антагонистов: с их помощью моделируют состояние гиповитаминоза.

Представители антивитаминов и их источники

Происхождение у данных веществ разное: некоторые из них получают исключительно синтетическим путем, другие входят в состав обычной пищи. К определенному витамину нередко существует сразу несколько типов антагонистов. Создана сводная таблица антивитаминов.

ВитаминыАнтивитамин
A (ретинол)Липооксидаза
B1 (тиамин)Окситиамин, пиритиамин, тиаминаза
B2 (рибофлавин)Изорибофлавин, дихлоррибофлавин, галактофлавин
B3 (ниацин)Изониазид, тубазид, фтивазид
B5 (пантотеновая кислота)α-метилпантотеновая кислота
B6 (пиридоксин)Дезоксипиридоксин, циклосерин, линатин
B9 (фолиевая кислота)Птеридины (аминоптерин, метотрексат)
B12 (цианокобаламин)Производные 2-аминометилпропанол-В12, свинец
B7 (биотин)Авидин
C (аскорбиновая кислота)Аскорбатоксидаза
KКумарины (дикумарин, варфарин, тромексан)

Ретинол

Обмен ретинола может прекратиться на этапе дезактивации каротина (его предшественника). Антивитамином выступает липооксидаза. Наибольшее количество указанного фермента содержится в сое, не подвергшейся термической обработке.

Витамины группы B

Конкурентами B1 являются тиаминаза, окситиамин, пиритиамин. Большое количество первого соединения содержит сырая рыба, моллюски. Растительным источником антагониста B1 служат ягоды черники. Немного тиаминазы содержат рис, шпинат.

Подавляют действие B2 следующие антивитамины: изорибофлавин, галактофлавин, дихлоррибофлавин. Они блокируют рибофлавин по механизму конкурентного замещения. Ряд лекарственных препаратов, предназначенных для борьбы с малярией (акрихин, хинин), обладают свойствами ингибиторов B2.

К антагонистам B3 относятся противотуберкулезные средства (изониазид, фтивазид, тубазид). Указанные препараты также являются ингибиторами для B1, B2, B6, никотиновой кислоты.

Антивитаминный эффект способствует задержке роста и размножения микобактерий туберкулеза. Антагонистом никотиновой кислоты является индол-3-уксусная кислота, которую содержат кукурузные зерна.

Свойствами ингибитора B3 обладает Пантогам (лекарство, использующееся в психиатрической и неврологической практике).

Применение α-метилпантотеновой кислоты способно спровоцировать дефицит B5. Экспериментальное введение вещества приводило к появлению признаков нарушения работы почек и надпочечников. Оно является объектом только научных исследований.

Конкурентами B6 являются циклосерин, дезоксипиридоксин. Основное предназначение указанных веществ — создание искусственного гиповитаминоза. Подавляет биологическую активность пиридоксина и линатин. Его содержат некоторые виды бобовых, семена льна, грибы.

Наиболее известным представителем антивитамина B7 является авидин. Данное соединение содержится в сыром яичном белке птиц. Авидин не разрушает витамин, но образует с ним неактивный комплекс. Термическая обработка позволяет избежать нарушения усвоения биотина.

Антивитамины фолиевой кислоты используют при лечении острых лейкозов. Один из наиболее известных препаратов — метотрексат. Угнетение деления злокачественных клеток достигается за счет нарушения работы фолатзависимых ферментов с последующим блоком синтеза нуклеиновых кислот.

Антивитаминную роль для кобаламина косвенно играют 2-аминометилпропанол-В12, соединения свинца. Нормальное всасывание B12 обеспечивается благодаря действию внутреннего фактора Касла. Свинец подавляет его активность, тем самым ухудшая абсорбцию кобаламина. Похожий механизм наблюдается и при взаимодействии с фолиевой кислотой.

Аскорбиновая кислота

Катализатором окисления данного соединения является аскорбатоксидаза. Фермент участвует в превращении витамина C в дегидроаскорбиновую кислоту. Он содержится в некоторых видах растительной пищи, не подвергшейся термической обработке.

Наибольшая активность аскорбатоксидазы обнаружена в огурцах и кабачках. Скорость процесса окисления напрямую связана со степенью повреждения продукта: чем сильнее измельчено растение, тем активнее протекает реакция. Достаточное температурное воздействие позволяет блокировать действие аскорбатоксидазы.

Витамин K

Впервые об антагонистах для данной группы соединений заговорили после обнаружения «болезни сладкого клевера» у крупного скота. Ученые заметили, что у животных, которые длительно употребляли данное растение, была склонность к кровотечениям. После подробного исследования у них зафиксировали нехватку витамина K. Причиной дефицита являлось вещество дикумарин.

Открытие кумаринов повлекло за собой создание некоторых видов антикоагулянтов (веществ, препятствующих свертыванию крови). Наиболее известным представителем является варфарин. Его используют как средство для предупреждения и лечения тромбозов.

Опасны ли антагонисты витаминов?

Представляют ли рассматриваемые соединения угрозу для здоровья? Скорее, потенциальную. Большинство антивитаминов были синтезированы в лабораторных условиях, поэтому встретить их в обычной жизни маловероятно.

Прием лекарств, обладающих свойствами антагониста, при необходимости сопровождается дополнительным назначением жизненно важных соединений.

Например, противотуберкулезные препараты используют совместно с витаминами группы B.

Не стоит опасаться еды, содержащей указанные вещества. Если рассматривать соотношение витаминов и их конкурентов, первых содержится значительно больше. Спровоцировать появление патологии смогут только грубые нарушения диеты (например, крайне однообразная пища).

Большая часть антагонистов инактивируется с помощью достаточной термической обработки продуктов. Залог защиты организма от избыточного действия антивитаминов — правильное сбалансированное питание и точное следование терапевтическим схемам, назначенным врачом.

Источник: https://vitaminy.expert/antivitaminy

WikiHelpProstuda.Ru
Добавить комментарий